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can then write pi(r)—pi)o=apE so that 

-Z*< f c ,{<k|P7^|k>-<k|P|k><k|F2 J |k>} * 

= -E*<^Efl^<k|P|k+q><k+q|F2jJ|k) 

- / 
ViE(r)pE(r)dr. (A3) 

PE(T) with [Fjs?(r) —F2js?(r)j is just a self-energy term 
which could be added to (3.11), but is so small that it 
can be neglected. We can thus identify (A3) with 

• / • 

a I ps(r)Vji(r)dr. (A4) 

Finally from (A2) and from the definition of po given 
r\ ^ .i~ i_ J rr / \ • .1 t ^ m Sec. I l l C we find that 
On the other hand, VIE\X) is exactly of the same 

nature as VE [see Eq. (3.4a)] and the interaction of a=X)A;</ei,(k|P|k)/XlA;<^(k|k) = [(k|P|k)]av. (AS) 
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Using a simple itinerant-electron model of ferromagnetism with exchange interaction and Coulomb re­
pulsion between band electrons, spin waves, and their interactions are discussed. In the random-phase ap­
proximation, we obtained the diagonal elements of spin-wave interactions which reduce to Dyson's result in 
the limit of localized electrons for our model. A diagrammatical interpretation of the result is also given. 
When the band with down spin is partially filled and that with up spin empty, the spin-wave interaction con­
sists of the part arising from the modified exchange interaction, the part due to the electron kinetic energy 
and the Coulomb repulsion, and the part which involves both of these effects. Among these, the second seems 
to be rather small. For small values of the wave vectors of the spin waves involved, the spin-wave interaction 
depends on the wave vectors in the same way as in Dyson's result. The modification on the exchange inter­
action is such that the short-range part of the original exchange interaction is suppressed, whereas the long-
range part remains unaffected. This arises from electron (hole) exchanges, and cancels in the limit of localized 
electrons. 

I. INTRODUCTION 

SINCE Dyson's theory1 on the spin-wave interactions 
of the Heisenberg spin system appeared, this prob­

lem has been a subject of many investigations.2 How­
ever, the experimental test of these theories did not 
appear until recently. Experiments have been performed 
on ferromagnetic metals such as3 Ni and4 permalloy to 
determine the temperature dependence of spin-wave fre­
quencies which arise from spin-wave interactions. In the 
low-temperature region, they obtained the spin-wave 
frequency which decreases with the temperature as T5/2, 
in agreement with Dyson's result. However, its magni-
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tude, which is proportional to the square of the range of 
exchange interactions, is too large and requires the range 
of exchange interactions of about eight times the lattice 
constant to fit the above mentioned theoretical result. 
There are other evidences5 which indicate the existence 
of long-range exchange interactions. However, it was 
pointed out that such a long-range exchange interaction 
is inconsistent with other experimental evidence.4 It has 
been suggested that the itinerant character of electrons 
in these metals may be important.6 

On the other hand this problem is also of theoretical 
interest as another example in which interactions among 
elementary excitations play a major role.1*2,7 Although 
the property of elementary excitations in many-body 
systems has been a subject of numerous investigations, 
not much work has been done on the problem of inter­
actions among them, which are essential in understand­
ing the temperature dependence of energies of ele-

5 R. E. Argyle, S. H. Charap, and E. W. Pugh (to be published). 
6 W. Marshall, Eighth International Conference on Low-Tempera­

ture Physics, 1962 (Butterworths Scientific Publications Ltd., 
London, 1962). 

7 K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto) 
28, 784 (1962). 
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mentary excitations as well as the dissipation phe­
nomena involving them. 

Thus, it seems worthwhile to study the spin-wave 
interactions based on the itinerant electron model of 
ferromagnetism. The main difficulty here is the lack of 
exact description of a single spin wave in contrast to the 
case of the Heisenberg model. In this respect the situa­
tion is similar to that encountered in ultrasonic attenua­
tion in liquid helium at very low temperatures.7 Never­
theless, choosing a simple itinerant electron model of 
ferromagnetism which includes the Heisenberg model as 
a limiting case, it was possible to obtain a spin wave 
interaction which is a direct extension of that of Dyson, 

Although the expression for spin-wave interactions is 
somewhat complicated, it is possible to give a fairly 
simple diagrammatic interpretation of the result. Con­
sequences of the results are not fully examined, but we 
shall study two new aspects which did not exist in the 
case of the Heisenberg model. 

Throughout the text of this paper, we used the 
method of normal coordinates which seems to give the 
clearest presentation of the spin-wave interaction. In 
the Appendix, we shall discuss the connection of this 
method with that of the Green's function. 

II. DESCRIPTION OF SPIN WAVES 

The system chosen in this wTork is described by the 
following Hamiltonian: 

3 C = E e(k)aka*ak(T 
k.o-

1 

2N kik2k3 0-10-2 

u 
H Z) tfkit*tfk2ttfk3J*aki-k2+k3! , (2.1) 

N kik2k3 

where a^o* and a^ are creation and annihilation opera­
tors of an electron described by the Bloch function with 
the wave vector k and spin cr, respectively. The first 
term is the kinetic energy. The meaning of other terms 
becomes clearer if we go from Bloch to Wannier repre­
sentation, where operators in Wannier representation 
are written as 

1 
a\a= X e*k#1tfk<r, and complex conjugate, 

N1'2 k 

where 1 designates a lattice site. Then the second and 
the third terms of (2.1) are written as 

- £ Jirz($v$rn+Sx«SJ)+UZ an*auan*an , (2.10 
Ira 1 

where the spin operators Si and S\° are denned by, 

and Jim is the Fourier transform of / ( k ) . 
Thus, it is clear that the last term in (2.1) represents 

the Coulomb correlation of electrons at the same lattice 
point and the second term represents the interaction of 
electrons at the different sites which includes the ex­
change interaction. 

For simplicity, we assume that the band is non-
degenerate except for spins, or assumed no orbital de­
generacy. We also assume that the crystal has a cubic 
symmetry. A somewhat similar Hamiltonian was con­
sidered by Ruijgrok.8 But it appears that he did not 
consider the Coulomb repulsion U, which should be 
very important. However, some of his results are still 
applicable in our model. This model without the inter­
action between electrons at different sites was also 
considered by Kubo and his co-workers.9 The reason 
for including this is that our model reduces to the 
Heisenberg model in a certain limit, thus allowing us to 
compare our result with that of the latter model which 
is now well established.1'2 

On the other hand, one might object to the use of our 
Hamiltonian from a more fundamental point of view, 
especially with respect to the exchange interaction. 
Ruijgrok8 attempted to derive a Hamiltonian similar to 
ours, but the situation seems to be rather complicated. 
In fact, this turns out to be a most difficult problem 
related to the foundation of ferromagnetism. Instead of 
dealing with this subtle and controversial problem, we 
regard the Hamiltonian (2.1) as a useful model of itiner­
ant electron ferromagnetism, just as the Heisenberg 
Hamiltonian was a model of ferromagnetic insulators. 
Here we shall concentrate on the method of obtaining 
spin-wave interactions and a qualitative analysis of 
the results obtained, which will be useful in analyzing a 
more realistic Hamiltonian in the future. 

The Hamiltonian (2.1) has some convenient properties 
for our problem. Suppose each site is occupied by a 
single electron of either spin. Then, in the absence of 
kinetic energy, (2.1) simply reduces to the Heisenberg 
Hamiltonian of spin \ plus constant terms. We choose 
J\m such that the ground state is always ferromagnetic. 
Then in the ground state the electron of each site has the 
same direction of spin which we choose as the negative 
z axis. Because of the Pauli principle, one can easily 
verify that the result of the application of the kinetic 
energy Hamiltonian to this ground state vanishes. [Here 
we have made use of the fact that without loss of 
generality we can choose ]£k e k = 0 ] . Thus, as long as 

8 T. W. Ruijgrok, Physica 28, 877 (1962); D. C. Mattis, Phys. 
Rev. 132, 2521 (1963). 

9 T . Izuyama, D. J. Kim, and R. Kubo, J. Phys. Soc. Japan 18, 
1025 (1963). T. Izuyama and R. Kubo, J. Appl. Phys. 35, 1074 
(1964). 
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one can treat the kinetic energy as a perturbation, its 
effect upon the ground state vanishes. As already noted 
by Ruijgork,8 this situation allows us at least in this 
simple case to obtain exact description of spin waves 
and other excited states, which is written as follows: 

^ q = E Ck+q,kak+qt*#k;$o > (wave function) (2.3a) 
k 

where 

[—o?q+ u+e(k+q, k)>k+q,k 
1 

and 

1 1 

= [ 0 - / ( 0 , 1 1 ) ] - E <v+q.k< (2.3b) 
N k' 

1 

N k u+e(k+q, k)—coq u—/(0,q) 

(eigenvalue equation) (2.3c) 

where cog is the excitation spectrum with wave vector q 
determined by solving (2.3c), the lowest value of which 
corresponds, for small values of q, to the spin-wave 
energy, and <£0 denotes the ground state, N the number 
of lattice sites. We also used the following notations: 

e (k ,k ' )=e(k) -e (k ' ) , 7 ( k , k ' ) ^ / ( k ) - / ( k ' ) (2.4) 

and 

Band-theoretically, the case considered above corre­
sponds to the situation in which in the ground state the 
band with down spin is completely rilled, whereas that 
with up spin is empty, and electrons are bound to each 
lattice site except for polarizations in spin waves and 
other excited states.10 In the itinerant-electron model, 
on the other hand, electrons are not bound to the sites 
even in the ground state, and thus it is essential to 
start with the ground state in which at least one band 

is partially filled. Unfortunately, however, the exact 
description of the ground as well as the excited states 
for such a situation has not been obtained, and it is 
inevitable to introduce a certain approximation. We 
choose an approximation in such a way that it reduces 
to the exact solution in the above-mentioned exactly 
soluble case. This enables us to treat both models of 
itinerant and localized electrons simultaneously, and to 
discuss spin waves and their interactions in the itinerant-
electron model as a direct extension of those for the 
Heisenberg model.1'2 One such approximation is the 
random-phase approximation originally used to de­
scribe plasma oscillations11 and more recently, to describe 
spin waves in the itinerant-electron model of ferro-
magnetism.8,9 

In order to describe the spin-wave states, we first 
define the normal coordinate of a spin wave with wave 
vector q, 7q, such that the spin-wave state \j/q is ex­
pressed as 

^q=Iq0O (2.5) 

where <£0 is the ferromagnetic ground state with the 
spontaneous magnetization in the positive z axis. (7q 

and iq* do not necessarily mean creation and annihila­
tion operators of spin wave quantum. See Dyson.1) The 
state <t>o in general differs from that defined previously 
in that each site is not necessarily occupied by an elec­
tron. Then, the spin-wave spectrum is given by the 
following relation, with ft~ 1: 

wq/q<£o=[3C/q]<£o (2.6) 

In the random-phase approximation (RPA) it turns 
out that the normal coordinate takes the following form: 

!<{— E k £k+q ,k#k+q t*tfkl . 

Then, with the Hamiltonian (2.1), we have 

(2.7) 

[3C , / q ]=L{c(k+q i k)ak+qt*ak* — (1/^0 E E /(k—k2)ak+qt*akiai*akiaiflk+ki-k2* 
k kik2 <r\ 

— (U/N)Y* ^k4-qt*^kit*^k2t^ki-k2+ki--(l/iV)E E /(ki—k—q)ak1<ri*^k2t*^ki+k2-k~q(r1aki 
kik2 kik2 <r\ 

+ (Z7/iV)E «kit*ak2**«ki-Jc-q+kal«k*}Ck+q.k. (2.8) 
kik2 

In RPA, the products of four a's and a*'s in the above expression are approximated in the following way: 

^kia 1 *^k 2 <r 2 *^k 3 ( r3^k 4 ( r4^(^k 1 ( r 1 *^k4<r4)«k2(r2*^k3a3+(^k 2 ^2* a k3(r3)^ki ( r i *^k4<r4 

X^kxtrx #k3<r3/#k2<T2 #k4<r4 \#k2ff2 ^ k ^ / f l k i o ^ ^3k(T3==/ki<rilOkik40<ri<r4^k2<r2 #k3<r3 Okik3<Vi<r3#k2<r2 #k4<r4/ 

+ / k 2 ^ { 5k2ks5o-a<r3«k1<r1*«k4<r4— 5k2k45<r2cr4^k1<r1*^k3(r3} > ( 2 . 9 ) 

where the angular brackets are expectation values in the ground state, and 

/ k a s (#k<r*0k«r) . 

10 See also J. C. Slater, Phys. Rev. 52, 198 (1937). 
11 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953). 
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Then (2.8) reduces to 

[0C,/q]RPA-Z{[6(k+q, k)+2<r u+(l/N)Z / ( p + q , p)/k-, . ,>k+q t*aia 
k p,<r 

+ ( l / i V ) C ^ - / ( 0 , q ) ] ( / k + q t - / u ) i : akl+qt*a^}ck+q,k, (2.10) 
ki 

where 
^ ( i / 2 iv )E( /w-At ) . 

k 

(2.6) and (2.10) determine the eigenvalue coq and those coefficients ck+q,k for which the state lu is occupied and 
the state k + q t is unoccupied in <£0. Other c's remain undetermined by (2.6). However, for the reason given below, 
we determine these c's as well by imposing the following condition stronger than (2.6) with [ X , / q ] replaced 
by[3C,/q]BpA : 

co,/,= p C j q ] R p A . (2.11) 

Substituting (2.10) into (2.11). we obtain 

[ « q - e ( k + q , k ) - 2 e r 0 - ( l / ^ (2-12) 

P,<r ki 

From this equation we have the equation determining a)q 

1 1 fki — /k+qt 
= - £ - . . „ . : (2-13) 

0-/(0,11) N k e ( k + q , k ) + 2 ( r i / + ( l / ^ ) E / ( p + q , p ) / k - P ) . - c o 

and the expression for £k+q k 

1 1 
£k+q,k= = , (2.14) 

3V/ 2 2(7 £ + e ( k + q , k ) + ( l / # ) E / ( p + q , p) /k-P .a-w q 
P, (T 

where 9lq is chosen such that the normalization condi- If a band with down spin is completely filled and that 
tion for ^q with up spin empty, we can show by the periodicity of 

„ , x , e(k) and J Co) that 
Z k k + q , k | 2 / u ( l - / k + q t ) = l (2.15) ' ; ! ! 

k D=-*Jxx(0) L i,(k)2 . (2.20) 
is satisfied. 4o-2 u N k 

For small magnitudes of wave vector q, the smallest m «^ , w w » ™ ™T™™»^™^™ 
4. *T? / O I I N J- 4. • *-4- • III. SPIN-WAVE INTERACTIONS root of Eq. (2.13) corresponding to a spm-wave state is 

— n 2_i_n( *\ f9 1 ^ ^ e s ^ a ^ c o n s ^ e r n e r e the P a r t s of spin-wave inter-
q— (Z ~r w / > v • / actions which contribute to the temperature dependence 

. of spin-wave energy in the first order of these interac-
j9=_cr/ ica.('Q)_| ]C/k^a-fk) tions.1 First, write the temperature-dependent spin-

4o-7V kcr wave energy fiq(J) as a sum of the temperature-inde­
pendent part ^ o b t a i n e d in the previous section and the 

— ^ ~ E ( / k W k t ) e * ( k ) S (2.17) rest denoted b y X ( ^ ) : 

^2%N k Q q ( r ) = « q + A o q ( r ) . (3.1) 

with the abbreviations, Considering the fact that the second term arises from 
the interaction of the spin wave in our attention with all 

H^ = = _ _ _ _ ~(h\ T = _ . _ _ _ T(h\ other thermally excited spin waves in the first order, 

(2 '18) Aa,(r)=ZAfl„»,(r), (3.2) 
i(k) = e(k)+(l/J\OZ/(p)/^,.,+C0nst. (2.19) P 

p,<r 

where np(T) is the average number of the spin waves of 
e(k) is taken to be a single-particle energy of an electron mode p at the temperature T. AOqp is the change of 
of either spin in the Hartree-Fock approximation. spin-wave energy of mode q due to the presence of one 
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spin-wave quantum of mode p, and does no longer 
depend on the temperature, and is the diagonal matrix 
element of the interaction Hamiltonian of the two spin 
waves. There are other contributions to AOq(T), namely, 
those arising from higher order effects of this interaction 
and those involving more than two spin waves. We shall 
not consider these because the former would be small 
due to the smallness of the interaction and the latter 
would give rise to corrections to AOq(r) with higher 
powers of T. Thus, our task reduces to the calculation 
of A12qp. 

For this purpose, let us consider the operator, 

[oe,J q ] -co q / q . (3.3) 

This operator should vanish when it is applied to the 
ground state due to (2,6) implying that the state with 
one spin-wave quantum is an exact eigenstate of the 
total Hamiltonian. But when applied to excited states, 
this operator does not vanish due to the interaction 
between the spin wave in our attention and other excita­
tions present. Thus, supposing that there exists an 
effective interaction Hamiltonian 3Cef/ between excita­
tions including a spin wave of mode q, (3.3) can be 
written as 3Ceff'/q. Since we are interested in the expecta­
tion value of 3Ceff' in the state with two spin waves of 
the mode of q and p, respectively, we have 

</p*/q*3eeff7q/p)=</p%*{Cae^q)-Wq/g}/p). (3.4) 

One can easily verify that A12qp above have two im­
portant properties: 

(i) A£2qp=Aapq; (3.9) 

(ii) AQqp = 0, if either q or p vanishes. (3.10) 

The first property should follow also from the fact that 
the interaction energy of the spin waves is written as 
h Eqp ^qp^q^p. In order to verify the second property, 
let us assume p = 0 . Then, from (2.14), ci+p,i is seen to 
be independent of 1, and (3.7) involves the following sum: 

fkk' 11'] 

i I q OJ 

r Use of (2.6) and introduction of a proper normalization 
x constant finally yield 

* An q p «<7 p */ ( 1 *[[3C ) / q ] , / P ] ) /<V/ q */ q /p) . (3.5) 
11 Up to now in this section we made no approximation 
" concerning the normal coordinates Iq and Ip. The 
u knowledge of exact normal coordinates should then 
r yield exact A£2qp. However, we have only approximate 
r expressions for the normal coordinates obtained in RPA 
a in the previous section. Thus, we used these approximate 

normal coordinates in (3.5) and calculated it in RPA. 
First, noting that the spin-wave mode is a good normal 

\ coordinate of the system, we factorize the denominator 
of (3.5) as 

e {If*h*hlv)=(h*h)(h*h)- (3-6) 
1 

e This quantity reduces to unity due to (2.15). Next, using 
, (2.1) and (2.7), we obtain [[5C,/q], /p] , which involves 
i operators of the form ak1t*«k2t*^k3i^k4i. Thus, Aftqp 

contains terms involving expressions such as 

3 Application of RPA allows us to factor this as 

f — (ak1**ak8**ak7*ak8*)(«k2t«k4t«k5t*^k6t*) • 

This can be reduced further by using (2.9), and the 
) final result is expressed in terms of f^ff. Thus we obtain 

which is shown to vanish by using (3.8). The second 
property implies that the zero-wave vector spin wave 
has no interaction with other spin waves as one expects. 
In the previous section, we mentioned about a certain 
ambiguity in determining ck+q,k. I t is this property (ii) 
which made us impose the stronger condition (2.11) 
rather than (2.6) to eliminate this ambiguity. Other 
choices, for instance, where one assumes that all £k+q,k 
other than those for which the state k + q t is empty and 
the state k; is occupied in the ground state, are set 
equal to zero, do not have this property. 

Here it is appropriate to remark a little more on the 
nature of this ambiguity. First, note that if we have the 
exact normal coordinates, the exact spin-wave spectrum, 

1 fkk' 111 
Aftqp= £ E Ck'+q.k'*Cr+P.l'*^k+q>kCl+pll(l-/k'+qt)(l-/l'+pt)/ka/l'* , (3.7) 

A^kk' IF I q p J 
where 

fkk7 II' fkk7 11) 
= { 2 / ( 0 ) + / ( k - l - p ) + / ( k - l + q ) - 7 ( k + q ~ l - . p ) - / ( k - l ) } 5 k k ' « i r 

{ q p J 
— / ( — q)5k+q1l+P^H'~" ̂ ("~p)5k4q,l+p^kk' + ^ r(p~q ) k+q—1~--p)dk+q,l'+p<$k'+q,H-p 

+J(l—k— q^Sk'+q.i+pSki'+ZCk—l—p)5k+q>i'+p5k'i—{/(—q)8ii'+/(—p)5kk'}5ki 

— J(k — 1, q—p)5kq<5kl'+{25kk/5ii'~(5kk' + 5nO(^kl+5k+q)l+p) + ^k'fq,l+p5kl' + 5k+qIl'-i-p^k'l}^. (3.8) 
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FIG. 1. Diagrams of an electron 
and a hole. 

ELECTRON HOLE 

and the exact ground-state wave function, (3.5) can be 
rewritten as (choosing (3C) = 0) 

AOqp=</q*7p*a(^ l/g>/<7q%*7p/ f l>-w f l--«p. 

Thus, due to the commutativity of different J's, the 
ambiguity should have no effect on A12qp as long as one 
performs exact calculations. Thus, the ambiguity 
matters only when one introduces approximations, and 
such ambiguity should be eliminated at each step of the 
approximation in a way consistent with other require­
ments such as (3.10), as we have done here. 

Another important consequence of (3.7) is that in the 
limit of localized spins, our A12qp reduces to the correct 
result of Dyson and others.1'2 In order to see this, we 
drop the kinetic energy in the Hamiltonian and suppose 
that in the ground state, the band with down spin is 
completely filled, and that with up spin empty. Then, 
from (2.14) and (2.15), Ck+q,k and ci+p.i become inde­
pendent of k and 1, respectively, and are equal to N~l/2. 
(3.7) then becomes 

rkk' 11] 
AQQ 

k k ' 11' q 
(3.11) 

where the summations are over the first Brillouin zone 
of the reciprocal lattice space. When one makes use of 
the fact that £ k / ( k ) = NJn=0 and that / ( k ) is periodic 
in the reciprocal lattice space, (3.11) reduces to 

A Q „ = - ( 2 / ^ ) [ / ( 0 ) - / ( q ) - / ( p ) + / ( q - p ) ] - . (3.12) 

This agrees with the result of the Heisenberg model.1'2 

Therefore, our result (3.7) may be regarded as a direct 
extension of the result of Dyson and others1,2 to the 
case of itinerant electron model of ferromagnetism. 

Before proceeding to the consequences of our result 
(3.7), it is helpful to give its diagrammatical interpreta­
tion. We take the ferromagnetic ground state as the 
vacuum and represent an electron outside the Fermi 
spheres and a hole inside by a vertical line with an arrow 
directed up and down, respectively (Fig. 1). Then a 
spin-wave quantum is represented by two vertical lines 
corresponding to an electron with up spin and mo­
mentum k + q and a hole with down spin and momentum 
k (Fig. 2). The hole is labeled by the spin and momentum 
of the electron annihilated to create the hole. 

The interactions among electrons and holes are given 
by the last two terms of (2.1). The form of the normal 
coordinate (2.7) tells us that in spin-wave states we 
need to consider only electrons with up spin and outside 

the Fermi sufrace and holes with down spin and inside 
the Fermi surface. Then the last two terms of (2.1) 
consist of three types of interactions: 

(a) Interactions between two electrons or two holes 
of the same spin described by 7(k) [Fig. 3(a)] . 

(b) Interactions accompanying annihilation and crea­
tion of electron-hole pairs described by J(k) [Fig. 3(b)]. 

(c) Interactions between an electron and a hole with 
opposite spins described by U [Fig. 3(c)]. 

The spin-wave interactions are constructed in the 
following way: First, draw four lines representing two 
spin waves. Insert one interaction of the kind (a), (b), 
or (c) described above in all possible ways among these 
four lines, excluding those connecting two lines which 
belong to the same spin wave because these are already 
taken into account in describing each noninteracting 
single spin waves. Taking into account the possibility 
of electron (hole) exchanges in the final states, each in­
teraction of the types (a), (b), and (c) gives rise to 
eight different diagrams of spin-wave interactions. 
Thus, we have altogether 24 different diagrams which 
precisely correspond to 24 terms (counting multiplicity) 
of (3.S). Some typical diagrams arising from each of the 
types (a), (b), and (c) (above) are shown in Fig. 
4(a), (b), and (c), respectively. 

The first 16 diagrams or terms belonging to the types 
of Fig. 4(a) and (b) are further divided into two groups 
of eight diagrams each. The first group consists of those 
diagrams [or terms of (3.8)] in which arguments of J 
involve only q and p, whereas the second group consists 
of those in which arguments of / cannot be written 
solely in terms of q and p. The terms of (3.8) correspond­
ing to the first group do not vanish in the limit of 
localized electrons and give rise to Dyson's result (3.12). 
The terms corresponding to the second group vanish in 
this limit. One can show that the diagrams of the second 
group are derived from those of the first by exchanging 
electrons (holes) of the same kind among themselves in 
the final state in such a way that no diagrams appear 
more than once. 

Here a remark is in order. From (3.7) there is a re­
striction on possible final electronic states, namely that 
the states k ' + q t and l ' + p t should be outside the Fermi 
surface, whereas the states k'j, and l'i should be inside. 
There is no such restriction on the initial electronic 
states. Thus, in order to make our diagrammatic inter-

FIG. 2. A diagram of a spin wave. 

k + q f 
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pretation more precise we must include diagrams in 
which initial electronic states do not satisfy the corre­
sponding restriction. Thus, for instance, in the diagram 
of Fig. 4(b), we must allow such situations in which the 
state k | is outside the Fermi surface and the state 1+pt 
inside. The lines representing these states then are 
suppressed in the diagram and this situation is repre­
sented in Fig. 5, where the cross indicates the inter­
action of created electron-hole pair with other ground-
state electrons. 

k« + q * k'4- l'«f-p t 3 1 * 

k + 9f k 4< 1 + p * 1 + 

IV. SPIN-WAVE INTERACTIONS 

Having obtained an expression for spin-wave inter­
action (3.7) and (3.8) and some of its properties, we 
proceed to investigate it for small wave vectors of the 
spin waves involved. For simplicity we assume that the 
band with up spin is empty in the ground state, that 
is, /kt = 0. 

In (3.7) we can drop all f's if the summations over 
k' and Y are restricted within the Fermi sphere of down-
spin band. We first perform summations over k snd 1 
thus eliminating all the Kronecker's delta in (3.8), and 
then expand the resulting expression in powers of q and 
p, where no singularity appears in the procedure. There­
fore, if one takes into consideration the two properties 
of AOqp, (i) and (ii) in I I I , A12qp has the following general 
form for small values of q and p: 

Afiqp= — Ciq-p- •C 2 (q-p) 2 

-Czq
2p2-C^V){q2+p2). (4.1) 

Here, the first and the last terms give rise to scattering 
between spin waves, but do not contribute to AQq(T) 
because they vanish when averaged over all directions 
of p. The second and the third terms give spin-wave 
interactions of the form q2p2 after the same averaging. 
This is in agreement with Marshall's argument6 on 
general considerations. In the following we drop the 
last term in (4.1) out of consideration. 

Evaluation of the coefficients C±, C2, and C3 is ele­
mentary but tedious. For G , we obtain 

3N a a2UNe k 
•H'taiky , (a=x,y,z) (4.2) 

where X / means the summation within the Fermi sphere 

j (k) ate) 

v̂  
; j ( k ) r\ 

(a) lb) (c) 

FIG. 3. (a) Diagrams of interactions between two electrons or 
two holes of the same spin, (b) A diagram of an interaction ac­
companying annihilation and creation of electron-hole pairs. 
(c) A diagram of an interaction between an electron and a hole 
with opposite spins. 

!•+ p t 

FIG. 4. (a), (b), 
and (c) represent 
typical diagrams of 
spin-wave interac­
tions involving in­
teractions of Fig. 
3(a), 3(b), and 3(c), 
respectively. 

k«4- k'+ q f 

» 

i » * 

k + qf k + 1 + p f 1 + 

M 

fc*+ q f kVJ, 1'+ p+ l ' ^ 

A t i T 

k + qf fc* 2 + p f 1 * 

(c) 

and we also define 

Jafi... = Jafi...(0) - £ ' E' /^...(k-1). (4.3) 

Ne
2 k 1 

For the Heisenberg model, (3.12) yields, 
C i = - ( 2 / 3 t f ) E . / « « ( 0 ) . (4.4) 

(4.2) differs from (4.4) in two respects: 

(i) Appearance of the additional term due to electron 
kinetic energy and Coulomb repulsion. 

(ii) The modification of the exchange interaction 
term. 

These same features also appear in Ci and C3, and 
will be discussed later. Let us now rewrite (2.17) as 
follows: 

Ne 1 a2 1 
D~—Jxx+—-E'— €(k) £ ' e,(k)». 

IN 2Ne k dkx
2 4AV u k 

(2.170 

Using this expression, (4.2) can be also written as, noting 
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v FIG. 5. Special case of Fig. 
4(b), where the state k | is 
occupied and the state 1 + P T 
is empty in the spin-wave 
state. 

the cubic symmetry of the crystal, 

f 2 2 d2 1 
d^l—D £ ' e(k) q-p, (4.10) 

l^tot N2 k dk2 J 

where Stot=Na = Ne/2 is the magnitude of the total 
spin of the system. If the second term of the expression 
inside the curly bracket above is absent, the relation 
reduces to that obtained by Keffer and Loudon2 for 
the Heisenberg model and called the structure-independ­
ent spin-wave interaction. The second term vanishes if 
there is no kinetic energy or if the band with down spin 
is completely filled. 

We now turn to C2 and C3. In order to simplify 
calculations, we shall consider two simple cases of our 
model: Case (i). The exchange interaction is absent. In 
this case the spin-wave interaction arises from the 
processes such as given in Fig. 4(c) and we get 

where 

{SE-

1 r2 66 
C2= -£2 + f 

2N<rmkP
2LS 175 

l r 2 6 -

c3= — ~e+-e 
2NamkF

2L5 35 . 
kF2 €F 

(4.11a) 

(4.11b) 

-, (eF-Fermi energy). (4.12) 
2mcrU aU 

[T. Izuyama used an expression for AOqp slightly different 
from (3.5) to calculate 0% and C3 and obtained a similar 
result (private communication). Also see Ref. 9.] case 
(ii). The kinetic energy is negligibly small. Here, the 
itinerant character of electrons is reflected in the fact 
that the band is only partially rilled with electrons. In 
this case, we obtain the following contribution to AOqp 

from C2 and C3 terms of (4.1): 

H Japysqaqppypo (a,P,y,8 = x,y,z). (4.13) 
2N *Py8 

This is to be compared with the corresponding expres­
sion for the Heisenberg model, which is, from (3.12), 

1 
£ Jafiy8(0)qaq^pyp6' 

2N «/378 
(4.14) 

We thus see these two cases represent, respectively, two 
new features in C\ of the itinerant-electron model 
mentioned previously. If we have holes instead of elec­

trons, that is, the band with the down spin is almost full, 
we have to change the sign of m in (4.11). The two terms 
of Japy& in (4.13) [see (4.3)] arise from those diagrams 
belonging to the first and second groups of I I I , respec­
tively. Thus, the modification of / ' s in (4.13) is due to 
the electron (hole) exchange effect, which cancels in the 
limit of localized electrons (the full band). 

In the general case, we also get terms additional to 
(4.11) and (4.13) which involve both the kinetic energy 
and the exchange interaction. 

Let us now examine the magnitude of AQqp in case (i) 
which we denote as Atiqp

K relative to that of the Heisen­
berg model (4.14), which we denote as Atiqp

H. Averaging 
over all directions of p yields 

<Afi„*>=-
€F f 6 

1 + _ ^ y (4.15) 
l5No*ni2Un 35 

where 6F=kF2/2m. Assuming the nearest-neighbor ex­
change interaction for the Heisenberg model, and noting 
Jxxxx(0)^JXxyy(0)^aAJz, where / is the magnitude of 
the exchange interaction and z the number of nearest 
neighbors, we obtain after averaging over the directions 
of p, 

(Ai\p
H)^- (a*/2N)zJq2p2. (4.16) 

The ratio of (4.15) and (4.16) is 

16 eF /W\2/ 6 \ 
|(AQq p*)/(AQq p*)l= ( - ) ( l + - g ) , (4.17) 

15a2z D/a2\ U/\ 35 / 

where D = 2aa2J and has the same meaning as in (2.16) 
for the Heisenberg model and W=l/2tna2. In the case 
of Ni, D-0 .47X10- 2 8 erg cm2,4 a=3.52 A, m=2S times 
electron mass,9 2=12, cr=0.3 corresponding to 0.6 hole 
per atom and JtF= 1.49 A - 1 , and the above ratio becomes 
1.5 X10- 3 [ l+(6 /35)Q/U 2 , where U is expressed in 
electron volts and is typically about 10 eV. (If we con­
sider the effect of electron correlations, U might be 
taken to be of the order of €^ = 0.3 eV in our estimation.) 
Although this estimation is very crude, it is unlikely 
that AUqp

K can explain the rather large spin-wave inter­
actions observed in Ni and permalloy. Moreover, when 
we are dealing with holes rather than electrons, we get 
positive (AQqp

K). 
We now turn to the case (ii). Writing / ( k ) as 

/(k)=Ee-*-R/R, 
k 

(4.18) 

where JR is the exchange interaction constant of elec­
trons separated by R, we obtain from (4.3) 

Jafiy^T, RaRfiRyRitl— £ ' ^i(^^R)jjt • (4.19) 
R \ Ne

2*,i J 

Thus, it looks as if, in G , (4.2) as well as in (4.13) and 
D} (2.170, the exchange interaction / R of the localized 
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electron model, is replaced by J R , given as 

JRSS(l £ ' e - ^ ) - * W (4.20) 
\ N2 k,l / 

When the down-spin band is slightly rilled, assuming 
a parabolic electron band of spherical symmetry, we 
can carry out the summations in (4.20) and obtain 

jR = ge(kFR)jR, (4.21) 
where 

f 3(x cos#— sinx) 12 

ge(x) = l—\ [ = x2/5, # « 1 
I x3 ) (4.22) 

- 1, x»l. 

The function ge(x) starts with zero at x=0 and rapidly 
approaches unity as x increases beyond 1. Thus, in the 
modified exchange interaction, the short-range part of 
the original exchange interaction is suppressed, whereas 
the long-range part remains unaffected. This is natural 
since all the electrons available have wave numbers 
smaller than kF, and hence cannot distinguish the dis­
tance smaller than ^kF~l. 

If the band with down spin is almost full, assuming a 
parabolic hole band of spherical symmetry, we obtain an 
expression similar to (4.21). 

where 
jR = gh(kFR)jR, (4.23) 

h(x) 
/N—Ne\

2 [ 3(x cosx—sinx)}2 

-'-br)—s—I a24) 

and kF is the Fermi momentum of holes. When N—Ne 

<3CiVe, the short-range part of J R is only slightly sup­
pressed and the long-range part is not affected. 

Thus, we see that if there exists in the original ex­
change interaction between localized electrons a long-
range part, such as suggested by Roth,12 it will certainly 
remain in the itinerant-electron model. 

V. CONCLUSION AND SOME REMARKS 

In the preceding sections, we have been able to deduce 
spin-wave interactions on the basis of itinerant-electron 
model of ferromagnetism. For the simple case discussed 
in IV, the form of spin-wave interactions turned out to 
be the same as in the Heisenberg model. This gives rise 
to the temperature dependence of the spin-wave fre­
quency proportional to JP5 / 2 . However, it has not been 
possible to attribute the observed large spin-wave inter­
actions to the itinerant character of magnetic electrons. 

In this work, for the sake of simplicity, we restricted 
ourselves to the simple model of ferromagnetism. I t 
would be interesting to apply our method to more 
realistic models. In particular, one can take into account 

12 L. Roth, Conference on Magnetism and Magnetic Materials, 
Atlantic City, 1963 (unpublished). 

the degeneracy of the band, which seems to be important 
in the problem of metallic ferromagnetism. Further­
more, one may also develop a method of incorporating 
the effects of higher random phase approximation13 in 
the present theory. 

On the other hand, there is another contribution to 
the temperature dependence of spin-wave spectrum 
which has not been considered in this paper. Tha t is, 
the effect due to the smearing out with temperature of 
the Fermi distribution function of electrons, which 
varies as T2, and thus should be more important than 
spin-wave interactions at lower temperatures.9 This can 
be obtained from (2.17), where /k<r now depends on the 
temperature. Crude estimation shows that in the tem­
perature range in which experiments have been per­
formed so far, T2 term is rather small compared to the 
r 5 / 2 term. [ I t was pointed out that if the exchange 
interaction between magnetic electrons is due to the 
conduction electron (Ruderman-Kittel-Yosida inter­
action), additional T2 term would appear due to the 
smearing out of the Fermi distribution function of con­
duction electrons (Ref. 9) .] So far there is no experi­
mental indication of the existence of T2 term. 

Finally, we make a few remarks on the recent work of 
Nakamura.14 In his theory, the spin-wave interaction 
consists of two parts, I \ and T2 in his notation. He men­
tions that each part does not vanish when one of the 
interacting spin wave has a vanishing wave number. On 
the other hand, it turns out that T2 coincides with our 
Afiqp if the normal coordinates used are the same. Thus, 
it appears from our result that the normal coordinates 
he used are different from ours. Note the ambiguity we 
mentioned before. Ti part is more difficult to under­
stand. If it is true, it should come in our theory from 
higher random-phase approximation. However, we point 
out that, as we have done in our theory, it is possible 
to perform the calculation in such a way that at each 
stage of the approximation the spin-wave interaction 
vanishes when the wave number of one of interacting 
spin waves vanishes. This is guaranteed by the fact that 
the normal coordinate of the zero wave vector spin wave, 

h=const X) 0kt*0ia, 
k 

is exact and thus commutes with the total Hamiltonian, 
and the normal coordinates commute with each other. 
We feel that this way of calculation is safer than invok­
ing cancellation of different contributions when one 
stops at a certain stage of the approximation. 
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APPENDIX 

Here we discuss the Green's function approach to the 
problem of spin waves in the itinerant-electron model 
of ferromagnetism. We adopt the causal Green's func­
tion which does not involve temperature defined as 
follows15: For any operators A and B, 

((A;B))(t)=-i(TA(t)B), (Al) 

where T denotes a well-known time-ordering operator15 

and ( ) denotes the expectation value in the ground 
state. 

First, we discuss a single spin wave, which has already 
been treated by Kubo et al.9 Introducing the following 
Green's function, 

Gkk';q(/)^((ak**tfk+qt; «k'+qt*«ka))(0 , (A2) 

its Fourier transform with respect to time (for which 
we use the same notation) satisfies 

0)Gkk';q= <W/(27r ) ( / k | — /k+qt) 

+ (([tfki*tfk+qt,3C]; ak'+qt*ak'*». (A3) 

The first decoupling approximation for the second term 
of this expression coincides with the result of RPA in 
the text, in I I and yields a linear closed equation for 
GW;q, which can be solved by introducing another 
Green's function as follows, 

^q;k' = S 6k-H,k*£kk';q, (A4) 
k 

where Ck+q,k satisfies (2.12) and coq is given by (2.13). 
Thus, we obtain 

(W —COq)Gq;k'= (l/27r)(/ka—/k'+qtVk'+q,k'*. (AS) 

Here, the ambiguity in determining c's mentioned in 
the text does not arise. This is, however, not taken to 
be the superiority of the Green's function approach, 
but rather, this is because the Green's function approach 
requires more than necessary for determining the normal 
coordinates of spin waves. 

Now, we turn to the problem of spin-wave interac­
tions. This has also been treated by Izuyama and Kubo9 

in a somewhat indirect manner, in which they obtain 
temperature-dependent spin-wave frequency by making 
use of one-magnon temperature Green's function. Here, 
we shall start with the two-magnon Green's function, 
and obtain spin-wave interaction directly. Thus, sup-

15 A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, 
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1963). 

posing that the exact normal coordinates Iq of the spin 
waves are known, we define the two-magnon Green's 
function by 

G« , = « / , * / , * ; W > , (A6) 

This, then, satisfies the equation 

coGq;p=(l/27r)([/q*/p*,7q7p]) 

+ [o?q+wp+X!qp(co)]Gq;p, (A7) 

where coq and cop are exact spin-wave frequencies with 
wave vectors q and p, respectively, supposedly known, 
and ^qp(w) is the mass operator defined by 

£ „ ( « ) = « [ / , * / P * , 3 C ] ' ; / , / , » / « W ; V p » , (A8) 

where 

[/q%*,3C J = [/q*/p*3C]- (a;q+a>p)/q%*. (A9) 

If one could evaluate ]Lqp(w) directly for a> —o>q+cop, 
this would give the interaction energy between spin 
waves q and p. This is made difficult especially because 
of the lack of the exact expressions for 7's, OJ'S, and the 
ground state. Here, we shall restrict ourselves to the 
simple case when the down-spin band is partially filled 
and the up-spin band empty, and show that in this 
simple case Sqp(co) reduces to (3.5) of the text for weak 
spin-wave interaction. In this case we can neglect spin-
wave interactions not involved in [/q*/P*,3C] and thus, 
we obtain 

« / q * /p* ; /p / q »W 

= -i<r(7q*/p*/p(-0A(-0)> 
= - f ( W / p / ^ ( 0 + ( w q % * M - 0 ] 

Xexp[-i(o>q+a>P)f|, (A10) 
where 

(9(0 = 1 for t>Q 

= 0 for / < 0 . (Al l ) 

Noting that in this simple case (/p/q/q*/p*) = 0, the 
Fourier transformed Green's function then becomes 

^ - ( t / 2 T ) < 7 e * / p * J p J q ) / C « + i ( c o - « q - « , ) ] , (A12) 

where e is a small positive number. In the same way 
we also obtain 

< < [ / q % ^ ] ' ; / p / q > > ( " ) 
^ - ( i / 2 i r )< [ / q * /p* , JCj /p / q ) / 

[€+f(co—coq—cop)]. (A13) 

Substituting (A12) and (A13) into (A8), and noting 
that the ground state, the spin-wave frequencies, and 
the normal coordinates are supposed to be exact, we 
easily see that X)qp(co) reduces to A12qp of (3.5). For a 
more general case, this correspondence is not so mani­
fest, but we feel our expression (3.5) is sufficiently clear. 


